Lecture 20
Plan: 1) Fimish LCIS algo.
2) Mactroid intersection polytope
3) Start min-cost arboressance
aftu todar, ~ 4 more lectroced. ~1 matroids
Matraid intersection polytope

- Let $M_{1}=\left(E_{1} I_{1}\right) \& M_{2}=\left(E_{1}, I_{2}\right)$ be two matroids, ravk furctions r_{1}, r_{2}.
- Amalogously to the matroid polytope, let

$$
\begin{aligned}
& X=\left\{1 s_{\substack{\in\left\{0_{0}, 1 \\
\mathbb{R}^{E}\right.}}=S \in I_{1} \cap I_{2}\right\}
\end{aligned}
$$

ie. $X \subseteq \mathbb{R}^{E}$ is sttof indicates of common independent sets.

- Define the matroid intersection poliftope $P_{M_{1}} M_{2}=\operatorname{conv}(X)$ (ca muse to optimize linemen functions over X).
- Main result: $P_{M_{1} M_{2}}$ is the intersection $P_{M_{1}} \cap P_{M_{2}}$ of the matroid polytopes $P_{M_{1}}$. $P_{M_{2}}$ of M_{1}, M_{2}.

$$
\Rightarrow \operatorname{vertices}\left(P_{M_{1}}\right) \wedge \text { verities }\left(P_{M_{2}}\right)=\operatorname{vertices}\left(P_{M_{1}} \cap P_{M}\right)
$$

- This is surprising!. In general, for pestopes P_{1}, P_{2}

$$
\begin{aligned}
& \operatorname{verts}\left(P_{1}\right) \cap \operatorname{verts}\left(P_{2}\right) \neq \operatorname{verts}\left(P_{1} \wedge P_{2}\right) \\
& \Rightarrow \text { intersection } \\
& \text { is common index sets. } \\
& =\text { vertices of } P_{m_{1}} n_{2}
\end{aligned}
$$

\rightarrow vertices $\left(\right.$ Pm $\left.^{\prime}\right)=$ if $P_{m_{2}}=P_{m_{1}} \cap M_{m_{2}}$ than Same set if $P_{m_{1}, m_{2}}=P_{M_{1}} \cap M_{M_{2}}$, then samertices.
eg.

P_{1}, P_{2} shore no vertices but

$$
P_{1} \cap P_{2} \neq \phi
$$

(\& hence has vertices).

- Interns of inequalities?
- Recall mattoid paljtope:.
for 1 rank function of M,

$$
\begin{array}{ll}
P_{M}=\left\{x \in \mathbb{R}^{\varepsilon}: x^{x}(S) \leq r(S) \forall S S E\right. \\
:=\sum_{e \in S} x_{e} . & \left.x_{e} \geqslant 0 \quad \text { } e \in E\right\}
\end{array}
$$

- $P_{M_{1}}$ nP $P_{M_{2}}$ has both sets of constraints, So 1981: can efficiently decide meweurdip in P_{m}, M_{2}.

Theorem: Let $P=P_{M_{1}} \cap P_{m_{2}}$, ie.

$$
\begin{array}{ll}
P=\left\{x \in \mathbb{R}^{E}:\right. & x(s) \leq r_{1}(s) \quad \forall s S E \\
& x(s) \leq r_{2}(s) \quad \forall s \subseteq E \\
& \left.x_{e} \geqslant 0 \quad \forall e \in E\right\}
\end{array}
$$

$$
P_{m_{1} M_{2}}=P \text { ie. } P_{m_{1} M_{2}}=P_{m_{1}} \cap P_{m_{2}} \text {. }
$$

Proof: Plan: similar to lecture 17 ,

- Like second proof for matron polytope, use vertex integrality
- dentegralitiz suffices by the usual logic:
\square clearly conv $(X) \subseteq P$, $b / C \subseteq P_{M_{1}} \cap P_{M_{2}}=P$?

D on the other hard, if P integral then $P \subseteq \operatorname{conv}(x)$ because interval points in $P_{M_{1}}, P_{M_{2}}$ are indicators of index sets in $M_{1}, M_{2} \Rightarrow$ integral points in $P_{M}, \cap P_{M_{2}}=P$ are common indepsets.

- Again, if $P=\{x: A x \leqslant b, x \geqslant 0\}$, matrix A is not totally unimodulom. f here are matrices
- But describing vertices will be T.U. (enogh).

$$
\sum_{* \in \mathbb{R}}^{x^{*}} \mathbb{R} \quad x^{*}=(.1,1, \sqrt{2}) ?
$$

Let $x^{* *}$ be an extreme point of P.
The. vertex

- We know x characterized by which inequlisis are tighent for it.

$$
T_{i}=\left\{s \subseteq E: x *(s)=r_{i}(s)\right\}
$$

ie. T_{i} sets of tight rack coulbints in M_{i}.

- Let $J=\left\{e: x^{*} e=0\right\}$.
- Then x^{*} is unique solution to

$$
F_{1}\left[\begin{array}{cc}
x(S)=r_{1}(S) & \forall S \in T_{1} \\
F_{2}\left[\begin{array}{cc}
x(S)=r_{2}(S) & V S \subset T_{2} \\
x_{e}=0 & \forall e \in J
\end{array} .\right.
\end{array}\right.
$$

- That is, $\left\{x^{*}\right\}$ is the intersection of two faces F_{1}, F_{2} in $P_{M_{1}}, P_{M_{2}}$.

$$
\begin{aligned}
F_{i}=\left\{x \in P_{M_{i}}: x(S)\right. & =r_{i}(S) \forall S \in T_{i} \\
x_{e} & =0 \quad \forall e \in J\}
\end{aligned}
$$

- Recall from lee 17: T; carve replaced by a chain C_{i} without charming F_{i}.
$\exists C_{1}, C_{2}$ chains sit.

$$
\begin{aligned}
& \exists C_{1}, c_{2} \text { chains st. } \\
& F_{i}=\left\{x \in P_{M_{i}}: x(S)\right.=r_{i}(S) \forall S \in C_{;} \\
& \quad x_{e}=0 \quad \forall e \in J\} .
\end{aligned}
$$

- Thus, assume x^{*} is solution to

$$
\begin{gathered}
x(S)=r_{1}(S) \quad \forall S \in C_{1} \\
x(S)=r_{2}(S) \quad \forall S C C_{2} \\
x_{e}=0 \quad \forall e \in J
\end{gathered}
$$

- This is $A x=b$ for $b \in \mathcal{R}$

Claim: A T.U. ${ }^{\prime} \Rightarrow x^{*}$ integral.

- Why? Rows of A are $1 s$ of S in chain C_{1} or C_{2}.
doenn't change T.U.
- We use discrepancy to prove.

Theorem 3.14 in polyhedral notes

- Recall: A T.U. $\Leftrightarrow \forall$ submatrices
A^{\prime} of A, \exists partition R_{1}, R_{2} of rows of A^{\prime}

$$
\sum_{i \in R_{1}} a_{i}-\sum_{i \in R_{2}} a_{i} \text { has }\{-1,0,+1\}
$$

- Consider submatrix A^{\prime} of A corpesponds to subchains $C_{1}^{\prime}, C_{2}^{\prime}$ (save form as A)
- Assigu R_{1}, R_{2} as follaus:
Δ Assign larget elent of C_{1}^{\prime} to R_{1}, then alternately assign remainingets of C_{1}^{\prime} to R_{2}, R_{1}
e.s.

sum has entries in $\{0,1\}$.
Δ For C_{2}^{\prime}, assigu oppositele.
e.9.

$$
C_{2}^{\prime}[F]=\begin{aligned}
& R_{2} \\
& R_{1}
\end{aligned}
$$

sum has ertries in $\{0,-1\}$.

- Overall, sam has eutries in $\{-1,0,13$.
- compléts the prool.

Matroid intersection oplimization

- Giver a cost function $c: E \rightarrow \mathbb{R}$ con we efficiently compute

$$
\max _{S \in I_{1} \wedge I_{2}}(S):=\sum_{e \in S} c(e)=c \cdot 1_{S}
$$

equiv: optimize $c^{\top} x$ over $x \in P_{M}, M_{2}$.

- For just one matroid: greedy alg works.
- For $C=1$: just L.C.J.S.

$$
(1, \ldots, \ldots, 1)|E| \text { times }
$$

- For perfect matchinp: Hungarian alogo.
egg. min -cost P.M.
- can also compute min cost L.CI.S. Exercise: equiv. to max cost index for $c^{\prime}=K-c$ for k large.
- In general, YES, can efficiently compute. D ellipsoid

Dcomplieated primal-dual algos. \rightarrow strongly poly. time * steps index of C if ainhmatie is unit cost.

- Today: simple prical decal alps. for,

Min-Cast arborescewce

- Recall: given directed graph D \& vertex r, arborescence A is a Spaningtree ind directed away from r.
eq.

- min-cost arborescewce:

$$
\min \sum c(e)=c(A)
$$

A arboresence $e \in A$
e. 9.
c

- e.g. edges = roads to be fixed $r=$ distribution center cost $=$ expense of fixing road.
- First, I.P. formulation:
assume C nonnegative. prink $x=1 / A$

$$
\begin{aligned}
& \text { OPT }=\min =\sum C e^{X} \quad \text { ecete }=c(A) \\
& x \in \mathbb{R}^{E} \quad e \in E
\end{aligned}
$$

$$
\begin{aligned}
& \text { subject to } \sum_{e \in \delta(s)} x_{e} \geqslant 1 \quad \forall s s V-r \\
& x=1 k \text {, wive } \sim e \in \delta(s) \\
& A \text { has } \\
& \underbrace{\text { inderves }=1}_{\substack{\sum_{r}}}<\sum_{e \in \delta(v)} x_{e}=1 \quad \forall v \in V-r \\
& \text { exants. } \quad x_{e} \in\{0,1\} \\
& x \text { is indicatos. }
\end{aligned}
$$

- Check. only solutións are 1 A whore A is an arborescence. in particulon, all arbos satisfor conctoins.
- Miraculousler, we'l show even w/ant integrality constraits \& inderee constant, there's still an optional solution that's an arborescure.
- I.e. the follain LP. has optimizer 1_{A} st. A is an arboresance.

$$
L P=\min _{x \in \mathbb{R}^{E}} \sum_{e \in E} c(e) X e
$$

subject to $\sum_{e \in \delta(S)} x_{e} \geqslant 1 \quad \forall S \subseteq V-r$.
(primal)

$$
x_{e} \geqslant 0 \quad \forall e \in E
$$

(note $L P \leq O P T b / c$ LP has (up in pre-eecture!) fewer constraints.).

- Dual $L P$ is ${ }_{\text {is }}$ "symmetric vepion"

$$
L P=\max \sum_{S \subseteq v-r} y_{S}
$$

sulject to

$$
\sum y_{s} \leq c(e) \forall e \in E
$$

(dual) S:e૯J (s)

$$
y_{S} \geqslant 0 \quad \forall s \subseteq v-r .
$$

- Algorithm sketch: coustruct
Δ arb. A,
Δ dual feas. Y satistying complementory slackners
Then $C(A)=L P$, but $L P \leqslant O P T$

$$
C(A) \leqslant \text { OPT } \Rightarrow C(A)=\text { OPT. }
$$

- Complementary slackness for $x=1_{A}, y$ says:
a.) $y_{s}>0 \Rightarrow\left|A \cap \delta^{-}(s)\right|=1$
b.) $e \in A \Rightarrow \varepsilon y_{s}=c(e)$.
$s: e \in \delta(s)$
- Two phases of algorithm:

1) Construct
Δ dual fees y
Δ set F of edges sit. every vertex of v readealde fromar in F,
F might not be an alhorescence. $\&$ \&,$A=F$ Patio for (b).
2) Remove unecessary edges from F, get arboresceuce which satisfies doth (a) \& (b).

Phase 1 initialize $F=\phi,\}=0$ counter $k=1$
Δ While not every this reachable from r in F
∇ select $S \subseteq V-r$

i) F strongly comrededins (every vertex can readier other using souls edges contained
ontinels in S) entirely in 5)
ii) $F \cap \delta(s)=\phi$ S is a "source" in decamp. of F into s.c.c's. (digraph has decomy where if S.cC.'s are contracted, left with DAG).

S is a subset of vertices, F suluct of edges. doe $S \subseteq$ vertices"tondad wor F ? not necessonaly. intitubler

Δ increase y_{s} unitil new inequality

$$
\varepsilon y_{s} \leqslant c\left(e_{x}\right)
$$

$S: e_{k} \in \delta^{-}(s) \quad$ note $e_{k} \& F$
becomes an equality. Bee
(y remain dual teas, Fin $\delta(s)$
b/c it was before)
$D F \leftarrow F+e_{k}, k \in k+1$
new F, y doit violate (b) because e_{k} is tight.
D Return Fig satisfying (b), \& everything reachatiel from r in F.

Phase 2: eliminate as many edges as we can in reverse ordn they were added.

- For $i=K \ldots . .1$:
Δ If $F-e ;$ contains a directed path from r to ever vectors $F \in F-e_{i}$.
\triangle Return $A=F$
Claim 1: A is an arborescence
Pf: . well show $|A|=N \mid-1$ \& $d^{-}(U)=1$
- If indegree cl for $V \neq r$, contradicts reachatiliz in A
- if $|A| \partial|v|-1$ then collision ai $Y_{v} P_{e j}$
- suppose icj \Rightarrow in reverse delete, would have removed $e_{j} \cdot b / c$ aurvertex readide thyprej is reachable though e_{i}.
finally:
Claim 2: Condition (a) of complementary slackness holds.

$$
\text { a.) } y_{s}>0 \Rightarrow|A \cap \delta(s)|=2
$$

PF: Assume not $\exists S$ sot.

$$
\begin{aligned}
& \text { Pf: Assume not } \\
& y_{s}>0 \text { \& }\left|A \cap \delta^{-}(S)\right|>1
\end{aligned}
$$

- S was chosen at some step \& of phase 1 when $w<$ added el to F.
- Fuad no other edges in $\delta(s)$ weer ce was added.
(b yconstruction)
\Rightarrow all edges of $A \cap \delta^{-}(S)$ are e_{j} for $j>l$.
- when S chosen, F strongly Conneeld within S
$\Rightarrow S$ staigly comected using only $e_{i} i<l$.

- Aubclain: All $e_{j}, j>e$ shall have been revved in Phase 2.
Why? suppose e_{j} necessary t visit some vertex v
- Let $P \quad r \rightarrow v$ path using e_{j}
- Let w last venter in S on P

Note: P first enters S Chyle e_{j}, else could shortunt e_{j} because S stor

- Because e_{l} is necessary at Step $\&$ of Phase 2, there must be another path Q though er.

similong: Q mut enter S first than el.
- Can use Q to shortcut e_{j}; thus ej not necessary.

